x-(2x-3)=-6(x^2+x-2)

Simple and best practice solution for x-(2x-3)=-6(x^2+x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x-(2x-3)=-6(x^2+x-2) equation:



x-(2x-3)=-6(x^2+x-2)
We move all terms to the left:
x-(2x-3)-(-6(x^2+x-2))=0
We get rid of parentheses
x-2x-(-6(x^2+x-2))+3=0
We calculate terms in parentheses: -(-6(x^2+x-2)), so:
-6(x^2+x-2)
We multiply parentheses
-6x^2-6x+12
Back to the equation:
-(-6x^2-6x+12)
We add all the numbers together, and all the variables
-(-6x^2-6x+12)-1x+3=0
We get rid of parentheses
6x^2+6x-1x-12+3=0
We add all the numbers together, and all the variables
6x^2+5x-9=0
a = 6; b = 5; c = -9;
Δ = b2-4ac
Δ = 52-4·6·(-9)
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{241}}{2*6}=\frac{-5-\sqrt{241}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{241}}{2*6}=\frac{-5+\sqrt{241}}{12} $

See similar equations:

| 4-2/5c=6 | | 10x=0.0001x= | | 4+(p−2)5=0 | | 3+7t=0 | | 14x+16=2x+16 | | 56x23(x433+3/3/4)=234 | | |2x−3|=9 | | 15y2-4y-4=0 | | 15+7x=100 | | 5x+15=5(x3) | | (x-4)+3=9 | | (x-7)+4=10 | | 8^2+5x=9x+4^3 | | (x+3)-6=12 | | 2x+50+6x+2=18 | | 9.75y^2+3.5y-2=0 | | 5x+10=2x+32 | | 1/2x^2-4/4x+5/4=0 | | 2x-1+3x-2=x+3 | | 2d3=-16 | | -4/3-t=2 | | x+1+12=3x-15 | | x=−55x=5x= | | 4x-36°+3x+20°=180 | | (3,10)(x+1)=-4 | | 2d-3=-16 | | 3n3n-5n;n=-1 | | x+13+4x=7x-5 | | 14+x+12=7x+14 | | 4*x=x*4 | | 2(1−2w)=4w+18 | | x-10+4=2x-19 |

Equations solver categories